Scripted REST APIs

Servicenovw

L ab Guide

ServiceNow custom REST APIs:

Build Custom Services the right
way with Scripted REST APIs

This
Page

Intentionally
Left
Blank

Lab Goal

Before we get started building custom services with Scripted REST
APls, we need to get our lab instance setup. In this lab you will be
modifying an existing scoped application. Start out by importing the
Polls Application from Source Control. Follow the directions below to
fork this application to your GitHub account and begin working.

Lab Setup

Prerequisites

In order to complete this lab, you must:
e Create a GitHub account, if you do not already have one.
e Install Postman from https://getpostman.com if you do not already have it.

Fork the Lab GitHub Repository
1. Login to your GitHub account at https://github.com/login.

O

Sign in to GitHub

Username or email address

Password Forgot password?

New to GitHub? Create an account.

2. Navigate to: https://github.com/balazsburgermeister/ScriptedRESTAPI

3. Click Fork.

& Watch~ 0 W% Star O

4. Note in the upper left that the repository has been copied to your account. You now have a
copy of the lab material for reference after the conference!

https://getpostman.com/
https://github.com/login
https://github.com/balazsburgermeister/ScriptedRESTAPI

5. Locate and click on the Clone or download button and then click the clipboard to the right.
This action copies the URL in the clipboard.

IMPORTANT: Be sure to copy the HTTPS repo URL in GitHub.

Clone with HTTPS @ Use SSH
Use Git or checkout with SVN using the web URL.

i Open in Desktop

Import the Polls Application from Source Control
6. Log in to your instance with the credentials provided on the cover sheet of this document.

7. Navigate to System Applications > Studio.

System Applications

Studio

8. Click Import From Source Control.

Load Application

You have not created any applications. Why not create one? Alternatively, you can import a valid ServiceMow application from a git repository.

Create Application Import From Source Control *—

9. Inthe Import Application window, paste the URL copied in step 5 and provide your GitHub
credentials. Click Import.

Import Application

Importing an application from source control will result in a new application being created in this ServiceNow instance based on the remote repository you
specify. The account credentials you supply must have read access to the remote repository. The remote repository you specify must contain a valid
ServiceNow application. For more information on requirements refer to ServiceNow product documentation.

* URL https://github.com/michaelpstarkey/ScriptedRESTAP.git]

User name

Password

Cancel Import

10. When the import completes, click Select Application.

Import Application

Successfully applied commit 299d811fd0e5a275d5939f0c64aa4d2f9elcedT0 from source control

11. Click on the Polls application you just imported.

Load Application

Create A New Application Import From Source Control

Applications (1)

O\
Status Application Vendor Version Created on Updated On .|
& Polls 10.0 2016-04-18 2016-04-18 18:22:25

\

You’ve now successfully imported your forked version of the application for use in this

workshop.

Get ready for Lab 1 — Create a new branch from Lab1-start tag in Studio

12. In Studio, navigate to Source Control > Create Branch.

/# Edit Repository Configuration

[~] Apply Remote Changes

~~ Switch Branch
«s Create Branch
&* Create Tag

(0 View History

13. In the pop-up window, enter a branch name, then select Lab1-start from the Create from
Tag menu, and click Create Branch.

Branch: my-Labl-branch
Create from Tag: Lab1-start

Create Branch

Creating a branch will result in a new branch being created in the remote repository that is configured
for this application.

> Branch Name my-Lab1-branch

Create from Tag Lab1-start v

Cancel Create Branch

14. When the create is complete, click Close Dialog in the Create Branch pop-up.

15. Verify Studio is on branch my-Lab1-branch from the bottom right corner of the screen.

Polls | 1.0.0 0 Files (0 unsaved) my-Labl-branch &

Lab setup is complete. You are now ready to start Lab 1.

Lab Goal Lab 1

The purpose of this lab is to familiarize yourself with ServiceNow BUiId
Scripted REST APIs. In this first lab you'll build a Scripted REST API “

that returns “Hello, world!” in response to a GET request. After HE"O,
building the API you'll use the ServiceNow REST API Explorer and API world 17
testing tool Postman to make requests to the REST API. *
Prerequisite

e Knowledge of REST APIs

o Knowledge of HTTP clients

e Postman API testing tool. To get Postman go to: https://www.getpostman.com/

Create Lab 1 starting branch

1. If you completed the lab setup, proceed to the next step.

If you haven’t yet completed lab setup, follow the steps in lab setup to create the my-Lab1-
branch from the Lab1-start git tag.

Create the Hello World Scripted REST API

2. In Studio, click Create Application File.

STUDIO File Source Control Window Search S System Administrator
+ Create Application File N OGoTo [Code Search

(© Application Explorer

The application explorer contains your
application structure and files.

Welcome to Studio

Keyboard shortcuts

¥+ O |+ 0 O, GoTo Open any file in your application.
¥+ 0 + C + Create New Create a new file of any type.
¥ + O + F Code Search Search files in any of your applications.

¥+ 0+ X 3 Close Current Tab Close Current Tab

https://www.getpostman.com/

3. Inthe Create Application File window, type REST in the filter then select Scripted REST API
and click Create.

Create Application File

O, REST *_

Filter Results @ Filter Results Scripted REST API

sys_ws_definition

Data Model (4)
REST Message Outbound Integrations
€ . niee Scripted REST APIs are
Forms & Ul 14 t
(14) Scripted REST API nbound Integrations used to create custom
inbound REST APIs
Server Development {9)
Client Development (8)
Access Control (2)
Properties (3)
Navigation 4)
Notifications (3)
Service Portal n

Content Management (16)

Service Catalog (10}

- f —p EZ3
Reporting (8)

4. Give the APl a name. Note the API ID populates automatically from the APl Name, but can
be changed.

Name: Hello, world!

Hello, world! ®
Scripted REST API
= Scripted REST Service +— .
— New record & = coo Submit
You can easily create a new REST API. To get started, give your APl a name and ID.
Mame Application
Hello, world! *— Polls @
= APIID APl namespace
hello. world| x_snc_polls

Protection policy

- None -- -

Submit *—

Click Submit.

5. Add a Resource to the API by finding the Resources related list. Click New.

Related Links

Enable versioning
Explore REST API
APl analytics
———

Resources | RequestHeaders = Query Parameters

Resources m*ﬁ_ v

API definition = Hello, world!

& =q

O\ = Name A = HTTP method = Relative path = Resource path = APl version

No records to display

6. Specify the following properties for the new resource and complete the script.
Name: Hello resource

Script: Copy script from http://bit.ly/CC17 ScriptedRESTAPI Labl

Hello resource
Scripted REST Resource

= Scripted REST Resource
=== Hello resource

& o oo Update
—

Delete
AP| definition Hello, world! o Application Polls @
Name Hello resource I *— Active |+
HTTP method GET j Relative path /

Resource path Japifx_snc_polls/hello_world

B 35| Q| v | &

seript | 9 LI

A @ B8 % @ >
(fu *

PIRequest#/ request, /+RESTAPIResponsex/ response) {
return "Hello, world!";
}){request, response),

Protection policy -- Mone—

Click Submit.

http://bit.ly/CC17_ScriptedRESTAPI_Lab1

Test with REST API Explorer
7. Click Explore REST API.

Related Links

Enable versioning

[Explore REsT API | *-

AP| analytics

Resources (1) | Reguest Headers = Query Parameters

= Rmumeam Goto @ Mame ¥ 4«4 4

? AP| definition = Hello, world!
502 Q. = Name A = HTTP method = Relative path = Resource path
(lj Hello resource GET / Japifx_snc_polls/hello_world

8. The REST API Explorer opens in a new browser window. Click Explore.

REST API Explorer

REST API Explorer

m)

The REST API Explorer allows you to quickly construct requests to access the
ServiceNow inbound REST API.

Table information from your instance is used to provide a list of endpoints, methods
and variables. You can use this information to build REST requests for integrations.

B &—

9. The “Hello, world!” Scripted REST APl is pre-selected in the Explorer menus. Click Send.

REST API Explorer

fapi/x_snc_polls/hello_world

Namespace Hello, world!
x_snc_polls j
APl Name Hello resource
Hello, world! j
GET
AP| Version
latest j

Prepare request

p Hello resource (GET]
Query parameters

Add query parameter

Request headers

Name

Request format
Response format

Authorization

Add header

— >

Value

applicationfjson

application/json

Send as me

Description

Format of REST request body

Format of REST response body

Send the request as the current user or with
another user's credentials

[ServiceNow Scripi] [cURL] [Python] [Ruby] [JavaScript] [Perl]] [Powershell]

10. Verify response status code is 200 OK and response body is “Hello, world!”.

Request

HTTP Method /
URI

Headers

Accept

X-UserToken

Response

GET
/apifx_snc_polls/hello_world

application/json

cbecd51c1151232007f4494386d91c894797a9010e7105820322bb160a4a94b657e7dedle

Status code

Headers
Cache-control

Content-
encoding

Content-type
Date

Expires
Pragma
Server

Transfer-
encoding

X-is-logged-in

Response Body

{

no-cache,no-store,must-revalidate, max-age=-1

gzip

application/json;charset=UTF-8
Fri, 21 Apr 2017 11:45:21 GMT
]

no-store,no-cache
ServiceNow

chunked

true

"resul_t":l "Hello, world!" I

}

Get Caught Up

If you were unable to successfully complete the lab this far, you can “fast forward” using the
following steps. Otherwise proceed to the next section Test with Postman.

11. Similar to creating the Lab1 starting branch, the completed lab can also be checked out from
a tag (Lab1l-complete) in Source control.

12. In Studio, navigate to Source Control > Create Branch.

13. In the pop-up window, enter a branch name, then select Labl-complete from the Create
from Tag menu, and click Create Branch.

Branch: my-Labl-branch-complete
Create from Tag: Labl-complete

14. When the switch is complete, click Close Dialog in the Create Branch pop-up.
15. Verify Studio is on branch my-Lab1-branch-complete.

16. You are now ready to continue with the next section of Lab 1.

Test with Postman
17. Open the Postman application on your laptop.

18. Import the Postman collection we will be using for this workshop from:
Postman Collection Link: https://www.getpostman.com/collections/a689598a0d2920c2e570

19. In Postman, click Import.

Mew Tab

GET

Authorization

Type

https://www.getpostman.com/collections/a689598a0d2920c2e570

20. Paste the link to our Postman collection in the Import from Link and click Import.

IMPORT X

Import a Postman Collection, Environment, data aump, curl command, or a RAML S
WADL f Swagger{v1/vZ) / Runscope file.

Import From Link

https:/fwww.getpostman.com/collections/abR9598a0d2920c2e570

—>

21. Verify you have the “Scripted REST APl Workshop” collection loaded by searching for it in the
navigator on the left hand side.

Uj Runner Import D, Builder (: balazsburg... ~ ‘ &

Q SCRIPTED REST API WORKSHOP*"‘ No Environment

CC17: Intro Lab

Golections » CC17: Intro Lab

All

GET {{instance_url}}/api/x_snc_polls/hellow... Params Save
SCRIPTED REST AP| WORKSHOP *—

19 requests Headers (1) L4
CC17: Intro Lab Key Value 3ulk Edit Presets ¥
CC17: Retrieve poll detail Authorization {{basic_auth_header}}

CC17: Retrieve poll detail w/ TEST
PaTcH CC17: Edit poll
PATCH CC17: Edit poll w/ TEST
CC17: Create new pol
CC17: Create new poll w/ TEST
DL CC17: Delete a poll

DEL CC17: Delete a poll w/ TEST

22. In the Scripted REST APl Workshop select the CC17: Intro Lab.

a. Replace {{instance_url}} with your lab instance URL (for example,
https://my instance.lab.service-now.com), and replace the resource URI with the
resource from your Hello World Scripted REST API. Copy/paste the resource path
from the Resource path field.

Hello resource
Scripted REST Resource

= Scripted REST Resource -—
=— Helloresource g = ©°°° | Update
AP definition Application
Hello, world! [} Palls 6]
MName Active
Hello resource v
HTTP method Relative path

GET j /

Resource path

fapi/x_snc_polls/hello_world

b. Click Update Request.
c. Click Send to send the HTTP request.

» CC17: Intro Lab

a C
GET ‘ /apifx_snc_paolls/hello_world Params “ Save

Authorization @ (1) L]

Type Basic Auth Clear

i The authorization header will be generated and
Username admin added as a custom header b

Password Knowledge17 Save helper data to request

Show Password

https://my_instance.lab.service-now.com/

23. Validate response is successful by looking for the 200 OK status code and message and that
the response payload contains “Hello, world!”.

» CC17: Intro Lab

GET

Authorization &

Type

Username

Password

Body

Pretty

=l K
!

"result":

m

Basic Auth

admin

Knowledge17

Show Password

)] (3/4)

"Hello, world!"

fapifx_snc_polls/hello_world Params Send hd Save

Clear
Llear

The authorization header will be generated and
added as a custom header

Save helper data to request

/

Status: 200 OK Time: 1332 ms

Save Response

View API Analytics for Hello World

24. From Explorer context menu, or from Scripted REST API definition click API Analytics.

Hello, world!

Hello resource

GET

—>

Share link

APl documentat

APl analytics

fapisx_snc_polls/hello_world

or

Related Links
Enable versioning
Explore REST API

APl analytics

= Rmumesm Goto Mame

j AP definition = Hello, world!

(i) Helloresource GET

Resources (1) | Reguest Headers = Query Parameters

so8 @] = Name a = HTTP method

44 4

= Relative path = Resource path

fapifx_snc_polls
Jhello_world

25. The API Analytics usage dashboard opens in a new browser tab, with the Hello world API
pre-selected. Observe the APl counts.

= || Usage by Web API v i

®_snc_polls/hello_weorld xw

APl Usage by Resource (Last 30 Days)

1

=
[

=

Total Request Count

=
i

*_snc_polls/hello...

Note: There is up to a 60s delay between an API call and when it is reflected in APl Analytics.
26. Close the REST API Explorer and API Analytics dashboard windows.

Lab 1 is complete. You are now ready to start lab 2.

© 2017 ServiceNow, Inc. All rights reserved. 19

Lab Goal

Having familiarized yourself with Scripted REST APIs in Lab 1, in Lab 2 Lab 2

Building

we’ll start building the “Polls” REST API that we’ll use for the rest of
this workshop. The Polls APl you’ll build provides a programmatic

interface to interact with the Polls application on your ServiceNow the PO"S
instance.
The Polls app is a simple app that allows for the creation of Polls that REST API

allow participants to vote on answers to questions. Polls can have
one or more questions associated with them. Questions can have
one or more choices associated with them. As an example a simple
poll could contain the question “What is your favorite color?”. Choices that participants could
choose would be; blue, red, yellow.

Create Lab 2 starting branch
1. In Studio, navigate to Source Control > Create Branch.

2. Inthe pop-up window, enter a branch name, then select Lab2-start from the Create from
Tag menu, and click Create Branch.

Branch: my-Lab2-branch
Create from Tag: Lab2-start

3. When the switch is complete, click Close Dialog in the Create Branch pop-up.

4. Verify Studio is on branch my-Lab2-branch.

5. You are now ready to start Lab 2.

Create the Polls Scripted REST API
6. In Studio, click Create New Application File.

7. Inthe Create New Application File window, type REST in the filter then select Scripted REST
API and click Create.

8. Give the Scripted REST APl a name, then click Submit.

Name: Poll
API ID: poll

9. Click the related link Enable versioning to enable versioned URIs for the new API.

BEST PRACTICES

Do: Use versioning to control API changes.

Do: Encourage clients to integrate against specific versions.
Don’t: Make breaking changes in an existing version.

Do: Release a new API version when introducing new behaviors.

== Scripted REST Service
= Polls

This form has annotations - click @ to toggle them - (click here to never show this aga

Name Polls

APIID polls
Active Z\
Protection policy --None -- :

Security = Content Negotiation = Documentation

Default ACLs &

Update Delete

Related Links

Enable versioning *—

Explore REST API
API| analytics

10. In the Enable versioning popup, uncheck the Make version v1 default checkbox, then click
OK.

Enable versioning

When you enable versioning for this API, all related resource records use a version-specific URL. To
continue supporting resources without a version number in the URL, make version v1 the default
version.

D Make version v1 default

Cancel

11. A new tab Versioning appears. Click to review the versioning tab contents.

Poll
Scripted REST API
= 2;'&'“9‘1 REST Service & ':—_? eeo Update Delete
Name Poll Application Polls 0]
APIID poll APl namespace x_snc_polls
Active Base AP| path fapifx_snc_polls/poll
Protection policy - None - 5]

Security Content Negotiation | Documentation

To add a new version, use the 'Add new version' link below. You can select one version as the default. Clients can access the default version using either the versioned or non-versioned URI
path.

Versions may also be inactivated or deprecated:

* Resources belonging to inactive versions cannot serve requests
* Resources belonging to deprecated versions can serve requests, but are identified as 'Deprecated’ in documentation

More info

Default version No active default version

Service Versions <4 < 1 tolofl B PP E
fé‘g = Version ID = Is default = Active = Deprecated
X () v false true false

Note: The API versions are maintained here. Deactivate versions, mark a version Is
default=true to allow non-versioned URIs to route to that version, or don’t define a default
version to force clients to specify the version when making requests to the API.

12. Add a Resource to the API. Click New on the Resources related list.

This resource will return the details of a specific poll.

13. Specify the following properties for the new resource and complete the script.

Name: Retrieve poll detail

API Version: vl

HTTP method: GET

Relative path: /{poll_id}

Script: Copy script from http://bit.ly/CC17 ScriptedRESTAPI Lab2 retrieve poll details

Retrieve poll details
Scripted REST Resource

== Scripted REST Resource -+
< | = Retrieve poll detalls & = ©°°° Update | Delete
API definition Poll @ Application Polls (O]
Name Retrieve poll details AP version vl Q, @®

Active |+

Request routing
The route configuration specifies the 'HTTP method' and 'Relative path’. These fields determine how HTTP clients access this resource.

The relative path identifies the sub-path to this resource relative to the base API path. The relative URI can contain path parameters such as 'fabc/{id}. The requesting client specifies the id
value, available to the script at runtime via the: Request API.

More info

HTTP method GET

o

Relative path /poll_id}

Resource path fapi/x_snc_polls/v1/poll/{poll_id}

Implement the resource
Access request details including URI path parameters, query parameters, headers, and the request body using the: Request API.
Configure the response including setting the HTTP status code, response body, and any response headers using the: Response API.
More info
Script ‘.,‘ E | B ﬂ)-:_: 4, W -~ A | @ = '.-_b >
(function process(/+RESTAPIRequestx/ request, /+RESTAPIResponsex/ response) {

var id = request.pathParams.poll_id;

,,,,,,,, Mt T Made Makadaiaad)

Click Submit.

http://bit.ly/CC17_ScriptedRESTAPI_Lab2_retrieve_poll_details

Test with REST API Explorer
14. Click Explore REST API,

Related Links

Add new version

Explore REST API

APT analytics

Resources (1) = Request Headers = Query Parameters

= Resources m Goto | Name v 44 4 1 tolofl B pp [
? API definition = Polls
ﬂb,:} O\ = Name A = HTTP method = Relative path = Resource path = APl version = Active
(i) Retrieve polldetail GET fpoll_id} fapi/x_snc_polls/v1/polis/{poll_id} v1 true
Actions on selected rows... ¥ 4« < 1| telofl > >

15. The “Polls” Scripted REST APl is pre-selected in the Explorer menus and the Retrieve Poll
detail resource is preselected.

16. Fill in sys id for a demo poll record and make a request.

To get the sys_id of demo record. Open the Polls module from navigator. Right click on
existing record to copy sys_id.

service R —— @) i - 0 3 @ @

(7 polls

Pnllsu Goto Number ¥ 44 « 1/to1ef1 B PP

< A

= Number a = Name = State
i POLOO010g2 Fiight click First Poll Active
* Show Matching
Actions on selected rows... Filter Out 44 4 1 to1ofl B pp
Copy URL to Clipboard
| comssia |

Assign Tag >

17. Fill in the sys_id on the REST API Explorer.

REST API Explorer

Namespace x_snc_polls
AP| Name Poll
API Version vl

s Poll

Retrieve poll details - Retrieve poll, questions, choices and votes polled by sysid

P | Retrieve poll details (GET)

GET http://10.11.91.87:16001/api/x_snc_polls/v1l/poll/{poll_id}

!

Prepare request

Path parameters

Name Value

* poll_id ddee64b9443a1200964fac543127alab

Click Send.

18. Verify the response status code is 200-OK.

Response

Status code

Headers
Cache-Control
Content-Encoding
Content-Type
Date

Expires

Pragma

Server

Strict-Transport-Security

no-cache,no-store, must-revalidate, max-age=-1
gzp

application/json;charset=UTF-8

Mon, 03 Apr 2017 03:47:21 GMT

0

no-store,no-cache

ServiceNow

max-age=15768000; includeSubDomains;

Transfer-Encoding chunked

X-Is-Logged-In true

Response Body

{
"result": {
"name": "First poll",

“questions": [
"id": "2a46dae6134b1200ed373d627244b041",
“question": “Favorite number",

“choices": [
{
"id": "3aa6lee6134b120@ed373d62f244bddc",
“choice": "3",
"score": null

Get Caught Up

If you were unable to successfully complete the lab this far, you can “fast forward” using the
following steps. Otherwise proceed to the next section Test with Postman.

19. Similar to creating the Lab2 starting branch, the completed lab can also be checked out
from a tag (Lab2-complete) in Source control.

20. In Studio, navigate to Source Control > Create Branch.

21. In the pop-up window, enter a branch name, then select Lab2-complete from the Create
from Tag menu, and click Create Branch.

Branch: my-Lab2-branch-complete
Create from Tag: Lab2-complete

22. When the switch is complete, click Close Dialog in the Create Branch pop-up.
23. Verify Studio is on branch my-Lab2-branch-complete.

24. You are now ready to continue with the next section of Lab 2.

Test with Postman

So far in this lab you’ve used Postman to make requests to ServiceNow REST APIs, Postman also
allows you to write and execute tests that evaluate response from a REST API and provide you
with Pass/Fail information based on your test and the response from the request. Let’s issue a
request against the new resource Retrieve poll detail and write a few tests to verify the
response we receive.

25. In Postman select the CC17: Retrieve poll detail request in the Scripted REST APl Workshop
collection. This request has been pre-built for you however you will need to update the
{{instance_url}} and path including {{poll_id}} parameters in the URL replacing them with
values from your lab instance. You will also need to update the Authorization section
specifying your username and password.

- instance_url: URL of your lab instance

- poll_id: Sys_id of a poll record in your lab instance
- Username: admin

- Password: admin password for your lab instance

» CC17: Retrieve poll detail
a

GET

Authorization ®

m

Type Basic Auth
Username admin
Password Knowledge17

Show Password

b

{{instance_url}}/api/x_snc_polls/v1/poll/{{poll_id}}

Params Send v Save

Clear

The authorization header will be generated and
added as a custom header

Save helper data to request

a. Replace {{instance_url}} with the URL of your lab
instance (e.g., https:/mylabinstance.service-now.com).

b. Replace {{poll_id}} with the sys_id of an existing Poll
record in your ServiceNow instance.

26. After populating your credentials and replacing the parameters click Update Request and

then Send the request.

27. Check that you’ve received a successful response. You should see a status of 200 OK and a
JSON payload that includes at least one poll as shown below.

» CC17: Retrieve poll detail

GET
Authorization @ (1)
Type Basic Auth
Username admin
Password ~ ssees
Show Password
Body (10) (3/3)
Pretty JSON —
L= K

2+ "result": {
"name": "First poll",
4~ "questions": [

5. i
6 "id": "2046dae6134b1200ed373d62f244b041" ,

7 "question"”: "Favorite number"”,

8~ "choices": [

9~

10 "id": "3aa6lee6134b1200ed373d62f244b@dc",
11 “choice": "3",

12 "score": null

14 ~ {

"id": "410616e6134b1200ed373d62f244b0fc",

fapi/x_snc_pollsivl/poll/3c265ae6134b... Params Save

Clear Update Request
The authorization header will be generated and
added as a custom header
Save helper data to request
Status: 200 OK Time: 240 ms

Save Response

«©

28. This request should return a status code of 200 OK, with a JSON payload that represents the
poll we requested. In addition the content-type header in the response should be
application/json;charset=UTF-8 and our JSON payload should contain a result object. Let’s
see how we can use Postman to verify this for us with tests that will be run as part of the
request.

29. In Postman, in the CC:17 Retrieve poll detail request, open the Tests tab by clicking on
Tests. Here you can specify tests that will be run as part of each request.

» CC17: Retrieve poll detail

GET fapi/x_snc_polls/v1/poll/3c265ae6134b... Params Save

[] m Tests @ *—

':ests["Status code is 200"] = responseCode.code === 200;

tests["Content-Type is application/json;charset=UTF-8"] = postman.getResponseHeader
("Content-Type") === "application/json;charset=UTF-8";

tests["Response Body Contains result"] = responseBody.has("result");

N

30. Postman has its own simple syntax for declaring tests. You can find out more about this
syntax at the Postman website. For this lab we’ve provided you with 3 tests that validate
that:

- the response status code is 200

- the response includes a content-type header with a value of
application/json;charset=UTF-8

- the response body contains the text ‘result’

31. Now update your request in Postman to run these tests. Copy the test script from the
following URL and paste it into the Tests area in Postman.
- Postman test script: http://bit.ly/CC17 ScriptedRESTAPI Lab2 postman test script

http://bit.ly/CC17_ScriptedRESTAPI_Lab2_postman_test_script

32. After copying click Send to issue the request. Now that we have tests specified as part of
our request test results will be displayed in the response area. If all tests passed you will see
a ‘(3/3) in the header and then a green PASS image next to each test as shown below.

(3) 9) Tests (3/3) Status: 200 0K Time: 118 ms

Status code is 200
Content-Type is application/json;charset=UTF-8

Response Body Contains result

1‘

Save your request in Postman. You now have a saved request in Postman that allows you to
easily issue a request to your ‘Retrieve poll detail’ resource and which will run test the
response to validate that it includes the correct status code, header, and payload content.
These were simple test cases but Postman will allow you to define more advanced test
cases to verify you are receiving the correct response from your REST API.

BEST PRACTICES

Do: Define test cases for each of your APIs resources to validate that the response is
formatted correctly and that the response contains the intended content. Building test cases
as part of your development process will help insure you’re building the API as you designed
it and provide you with a set of tests that can be run over time as you make changes to
guarantee that your interface has not changed unintentionally.

33. Close the REST API Explorer and APl Analytics dashboard windows.

Lab 2 is complete. You are now ready to begin lab 3.

Lab Goal

Lab 3

In Lab 3 you’ll continue building out the REST API for the Polls Req uest &
application adding resources to support creating a new poll,

editing an existing poll, and voting in a poll. In building out this Response
additional functionality you will further use and familiarize API

yourself with the Request and Response APIs that allow you to
interact with the request that your REST API receives and build
the response that your REST API will return.

Create the Lab 3 starting branch
1. In Studio, navigate to Source Control > Create Branch.

2. Inthe pop-up window, enter a branch name, then select Lab3-start from the Create from
Tag menu, and click Create Branch.

Branch: my-Lab3-branch
Create from Tag: Lab3-start

3. When the switch is complete, click Close Dialog in the Create Branch pop-up.

4. Verify Studio is on branch my-Lab3-branch.

5. You are now ready to start Lab 3.

Create New Resource in Polls API - Create a poll

6. The ‘Create a poll’ resource will be used to create a new poll in the ‘Polls’ application.
Open the Polls APl in studio and click New on the Resources related list to create a new resource.

File ntrol Search
-+ Create New Application File ot
Poll
Data Model Scripted REST AP
Fomsttl = pgpredresTsenice @ = ocoo Update | Delete
Server Development
Access Control
Navigation X ® u false true false
Integrations
v Scripted REST APIs Insert a new row..

Hello, world!

Poll
» Scripted REST Resources

Update Delete

Related Links

Resources (1) | RequestHeaders ~Query Parameters
= Resouues@cqm Name v << < 1 tolofl B PP B

33 Q = Name A = HTTP method = Relative path = Resource path = APl version = Active

G) Retrieve poll I GET [ipoll_id} Japi/x_snc_polls/vl/poll/{poll_id} vl true

7. Specify the following properties for the new resource.

Name: Create new poll

API Version: vl

HTTP method: POST

Relative path: /

Script: Copy script from http://bit.ly/CC17 ScriptedRESTAP| Lab3 create new poll

Create new poll

Scripted REST Resource o
Jees # = o som
AP definition Poll @® Application Polls
Name Create new poll API version vl Q ®
Active |V

Request routing
The route configuration specifies the 'HTTP method' and 'Relative path'. These fields determine how HTTP clients access this resource.

The relative path identifies the sub-path to this resource relative to the base API path. The relative URI can contain path parameters such as '/abc/{id}. The requesting client specifies the id value,
available to the script at runtime via the: Request API.

More info

HTTP method POST $ Relative path /

Implement the resource
Access request details including URI path parameters, query parameters, headers, and the request body using the: Request API.

Configure the response including setting the HTTP status code, response body, and any response headers using the: Response API.

More info

* Script | € . E | 9 | o5 L v & 7 Q|8 % >

-~

v (function process(/*RESTAPIRequest*/ request, /#RESTAPIResponsex/ response)
var data = request.body.data;
var pollHelper = new x_snc_polls.PollData_Creator();
var groupld = getUserGroupId(data.usergroup);

// Create Poll record
var pollRecord = pollHelper.createPoll(data, groupId);

Click Submit.

http://bit.ly/CC17_ScriptedRESTAPI_Lab3_create_new_poll

Test with REST API Explorer
8. Open ‘Create new poll’ resource and Click Explore REST API.

Create new poll
Scripted REST Resource

= Scripted REST Resource -—
| = Create new poll ,& — ©o° Update Delete

Resources can specify security settings that override the parent settings.

By default resources 'Require authentication' but do not 'Require ACL authorization'. To make a resource public, meaning no authentication is required to access the resource, uncheck

'Requires authentication’.

To require authorization, select the 'Requires ACL authorization' check box and select an ACL record(s). Leave the 'ACL' field blank to enforce the 'Default ACLs' from the parent API. Access is

granted if at least one matching ACL record is found.

More info

Requires authentication |+ Requires ACL
authorization

Update Delete

analyt

Request Header Associations = Query Parameter Associations

= | Request Header Associations u Search | fortext v

API resource = Create new poll

50! C) = API request header = Example value = Isrequired

No records to display

o

9. Create New poll resource is shown in the REST API Explorer. Fill in request body in the raw
tab under Request body section.

REST API Explorer

Namespace x_snc_polls s Poll =
AP| Name Poll

Create new poll
API Version vl

POST http://10.11.91.87:16001/api/x_snc_polls/vl/poll
P |Create new poll (POST)

Retrieve poll details (GET)

Prepare request

Query parameters

Add query parameter

Request headers

Name Value Description
Reguest format application/json N Format of REST request body
Responsa format application/json N Format of REST response body
Authorization Sendas me . Send the request as the curment user or with another user's
credentials
Add header

A sample request payload can be found at:
http://bit.ly/CC17 ScriptedRESTAPI Lab3 create new poll sample request

10. Copy the sample payload into the ‘Raw’ tab.

Request Body

Builder Raw

USergroup - Sonware
"questions": [{
"question”: "what is your favorite car®,
"choices": [{
"choice": "Audi"
W
"choice": "BMW"
Lo
"choice": "Corvette”
W
"choice": "Tesla"
N
)
} 4
w Clear response [ServiceNow Script] [cURL] [Python] [Ruby] [JavaScript] [Perl] [Powershell]

Click Send.

http://bit.ly/CC17_ScriptedRESTAPI_Lab3_create_new_poll_sample_request

11. Verify response status code is 201 Created

Response

Status code

Headers

Cache-Control no-cache,no-store,must-revalidate, max-age=-1
Content-Encoding gzip

Content-Type application/json;charset=UTF-8

Date Sun, 17 Apr 2016 15:55:46 GMT

Expires 4]

Location http://10.11.91.87:16001/api/x_snc_polls/v1/poll/83e342dab1321200964f2edc16efa08f
Pragma no-store,no-cache

Server ServiceNow

Transfer-Encoding chunked

X-Is-Logged-In true

Response Body

{
"result": {
“number": "POLO@@1081",
“name": "Second poll"
}

}

Create tests in Postman

12. In Postman select the ‘CC17: Create new poll’ request’. This is a pre-built request that
already contains an appropriately formatted payload for the ‘Create new poll’ resource.

SCRIPTED REST APl WORKSHOP

19 requests

CC17: Intro Lab
CC17: Retrieve poll detail
CC17: Retrieve poll detail w/ TEST
PATCH CC17: Edit poll
PATCH CC17: Edit poll w/ TEST
CC17: Create new poll
CC17: Create new poll w/ TEST
DEL CC17: Delete a poll
DEL CC17: Delete a poll w/ TEST

CC17: Vote in poll

13. Update the request replacing the {{instance_url}} and authorization credentials appropriate
for your lab instance. Use your admin credentials for this request. Once you’ve updated
those values save and then send the request.

14. As you saw when you tested with the REST API Explorer a successful response will include a
201 status code, a JSON payload that includes the number for the newly created poll, and
the response headers include a ‘Location’ header that provides the URL for this newly
created record. Let’s add tests in Postman that verify that the following details for in the
response:

- Response status code is 201

- Response headers include Location

- Response headers include Content-Type of application/json;charset=UTF-8
- Response body contains the text ‘number’

- Response body contains the text ‘name’

Update the request in Postman to include the following:

tests["Status code is 201"] = responseCode.code === 201;
tests["Location Header is present"] = postman.getResponseHeader("Location");
tests["Response Body Contains number"] = responseBody.has("number");

tests["Response Body Contains name"] = responseBody.has("name");
tests["Content-Type is application/json;charset=UTF-8"] = postman.getResponseHeader("Content-Type") ===
"application/json;charset=UTF-8";

For ease you can also copy these from:
http://bit.ly/CC17 ScriptedRESTAPI Lab3 create new poll test script

http://bit.ly/CC17_ScriptedRESTAPI_Lab3_create_new_poll_test_script

15. After adding the tests above save your request in Postman and Send the request. In the
response you should see the following tests and results.

POST https://, service-now.com/apifx_snc_global_pollsivi/poll Params Send W Save
(2) [] Tests @
tests["Status code is 201"] = responseCode.code === 201;

tests["Location Header is present"] = postman.getResponseHeader("Location");

tests["Content-Type is application/json;charset=UTF-8"] = postman.getResponseHeader
("Content-Type") === "applicatien/json;charset=UTF-8";

4 | tests["Response Body Contains number"] = responseBody.has("number");

5 |tests["Response Body Contains name"] = responseBody.has("name");

W R

(3) (11) Tests (5/5) Status: 201 Created Time: 284 ms

Status code is 201

Location Header is present

Content-Type is application/json;charset=UTF-8

Response Body Contains number

BEOBE

Response Body Contains name

Create New Resource in Polls API — Edit poll
The ‘Edit poll’ resource will be used to modify an existing poll record in the ‘Polls’ application.

16. Open the Polls APl in studio and click New on the Resources related list to create a new
resource.

17. Specify the following properties for the new resource.

Name: Edit poll

API Version: vl

HTTP method: PATCH

Relative path: /{poll_id}

Script: Copy script from http://bit.ly/CC17 ScriptedRESTAPI Lab3 edit poll

= Scripted REST Resource -—
{ = Edit poll j = oo° Update Delete /]\ \L
AP definition Poll ® Application Polls @
Name Edit poll AP version vl o} @
Active |+

Request routing
The route configuration specifies the '"HTTP method' and 'Relative path'. These fields determine how HTTP clients access this resource.

The relative path identifies the sub-path to this resource relative to the base APl path. The relative URI can contain path parameters such as '/abc/{id}" The requesting client specifies the id value,
available to the script at runtime via the: Request API.

More info

HTTP method PATCH Relative path Mpoll_id}

'

Resource path Japi/x_snc_polls/vl/poll/{poll_id}

! i sl

Click Submit.

http://bit.ly/CC17_ScriptedRESTAPI_Lab3_edit_poll

Test with REST API Explorer
Open ‘Edit poll’ resource and Click Explore REST API in related actions.

18. Edit poll resource is preselected in API Explorer.

REST API Explorer

Namespace x_snc_polis) Poll
API Name Poll

Edit poll
API Version vi

PATCH http://10.11.91.87:16001/api/x_snc_polls/v1/poll/{poll_id}

Cr - 0S
4 et bt T

Path parameters

Name Value

% poll_id ddee64b9443a1200964fac543127a1ab

Query parameters

Add query parameter

a. Fillin request body in raw tab under Request body section.

A sample request payload can be found at:
http://bit.ly/CC17 ScriptedRESTAPI Lab3 edit poll sample request

b. Copy the sample payload into the ‘Raw’ tab.

Request Body

Builder Raw

i

"question”: "what is your favorite film",
“choices": [{

"choice": "Avatar"

hi

"choice": "Avengers"

hi

“choice’: “Toy Story*

"choice": "Frozen"

m [ServiceNow Script] [cURL] [Python] [Ruby] [JavaScript] [Perl] [Powershell]

Click Send.

http://bit.ly/CC17_ScriptedRESTAPI_Lab3_edit_poll_sample_request

19. Verify response status code is 204-No content.

Response

Status code

Headers

Content-Encoding gzip

Date Sun, 17 Apr 2016 16:17:06 GMT
Server ServiceNow

X-Is-Logged-In true

Response Body

Create tests in Postman

20. In Postman select the ‘CC17:Edit poll’ request. This is a pre-built request that already
contains an appropriately formatted payload for calling the ‘Edit poll’ resource.

SCRIPTED REST API WORKSHOP
ntro La
CC17: Retrieve poll detai
CC17: Retrieve poll detai ES
PATCH CC17: Edit poll
PATCH CC17: Edit poll w/ TEST
7: Create new poll
7: Create new poll w/ TEST
DEL Delete a poll
DEL CC17: Delet: oll ES
CC17: Ve pol
CC17: Vote in poll w/ TEST
CC17: Retrieve poll results

21. Update the request replacing the {{instance_url}}, authorization credentials, and {{poll_id}}
with values appropriate for your lab instance. Use your admin credentials for this request.
Once you've updated those values save and then send the request.

As you saw when you tested with the REST API Explorer a successful response will include a 204
status code and an empty payload. Let’s add tests in Postman that verify that the following
details in the response:

- Response status code is 204
- Response payload is empty

22. Update the request in Postman to include the following:

tests["Status code is 204"] = responseCode.code === 204;

tests["Body is empty"] = responseBody ==="";

For ease you can also copy these from:
http://bit.ly/CC17 ScriptedRESTAPI Lab3 edit poll test script

23. After adding the tests above save your request in Postman and Send the request. In the
response you should see the following tests and results.

L Tests @
tests["Status code 15 2047) = responseCode. CO0E === Z204;
tests["Body 13 empty™] = responseBody ses=
Bsts | ¢

http://bit.ly/CC17_ScriptedRESTAPI_Lab3_edit_poll_test_script

Create New Resource in Polls APl — Vote in poll

24. The ‘Vote in poll’ resource will be used to cast a vote for an answer to a specific question or set of
questions that are part of a poll in the ‘Polls’ application. Open Polls APl in studio and add a
Resource to the API. Click New on the Resources related list.

API definition | Poll ® Application Polls ®
Name Vote in poll API version vl Q
Active |V
Request routing

The route configuration specifies the 'HTTP method' and 'Relative path'. These fields determine how HTTP clients access this resource.

The relative path identifies the sub-path to this resource relative to the base API path. The relative URI can contain path parameters such as '/abc/{id}" The requesting client specifies the id value,
available to the script at runtime via the: Request API.

More info

HTTP method POST Relative path /{poll_id}/vote

«

Resource path /api/x_snc_polls/v1/poll/{poll_id}/vote

Implement the resource
Access request details including URI path parameters, query parameters, headers, and the request body using the: Request API.
Configure the response including setting the HTTP status code, response body, and any response headers using the: Response AP!I.

More info

script | € E 3 38| Qv & 7 Q|8 % >

(function process(/#RESTAPIRequest*/ request, /+RESTAPIResponsex/ response) {

var pollld = request.pathParams.poll_id;
var pollHelper = new x_snc_polls.PollData_Creator();

// Validate if poll record exists
var pollRecord = new GlideRecord("x_snc_polls_poll");

Specify the following properties for the new resource.

Name: Vote in poll

API Version: vl

HTTP method: POST

Relative path: /{poll_id}/vote

Script: Copy script from http://bit.ly/CC17 ScriptedRESTAPI Lab3 vote in_poll

http://bit.ly/CC17_ScriptedRESTAPI_Lab3_vote_in_poll

AP definition | Poll (0] Application | Polls @

Name Vote in poll APl version vl Q,

Active Vv

Request routing
The route configuration specifies the 'HTTP method' and 'Relative path'. These fields determine how HTTP clients access this resource.

The relative path identifies the sub-path to this resource relative to the base API path. The relative URI can contain path parameters such as '/abc/{id}. The requesting client specifies the id value,
available to the script at runtime via the: Request API.

More info

HTTP method POST

«

Relative path /{poll_id}/vote

Resource path /api/x_snc_polls/vl/poll/{poll_id}/vote

Implement the resource
Access request details including URI path parameters, query parameters, headers, and the request body using the: Request API.

Configure the response including setting the HTTP status code, response body, and any response headers using the: Response API.

More info

Script | € E | 3 38| Q v | & 7 ©@ |8 % >
(function process(/*RESTAPIRequestx*/ request, /*RESTAPIResponsex/ response) {

var pollld = request.pathParams.poll_id;
var pollHelper = new x_snc_polls.PollData_Creator();

// Validate if poll record exists
var pollRecord = new GlideRecord("x_snc_polls_poll");

NOTE: Observe the custom response string being written to the response using the
‘getStreamWriter’ method. The getStreamWriter method is used to produce a custom
response in Scripted REST APIs and allows you (the API creator) to precisely specify the
format of the response. It is important to set content type and status code if writing to
stream directly.

Script ¢ > E 3 38| Q| v | & 7 @8 | % >
(function process(/+#RESTAPIRequest*/ request, /*RESTAPIResponsex/ response) {

var pollld = request.pathParams.poll_id;
var pollHelper = new x_snc_polls.PollData_Creator();

// Validate if poll record exists

var pollRecord = new GlideRecord("x_snc_polls_poll");
pollRecord.get(pollId);

var voteData = request.body.data.votes;

// Record votes
pollHelper.voteInPoll(voteData, pollld);

// Set response details

response.setStatus(201);
response.setContentType("application/json");

var responseBody = '{"message":"Voting successful}';
response.getStreamWriter().writeString(responseBody);

}) (request, response);

Protection policy --None --

«

Click Submit.

Test with REST API Explorer

25. Open ‘Vote in poll’ resource and Click Explore REST API in related actions.

26. Vote in poll resource is preselected in APl Explorer. Fill in request body in raw tab under
Request body section.

REST API Explorer

Namespace x_snc_polls 4 Poll

API| Name Poll

-

Vote in poll - Answer poll
API| Version vl

@

POST http://10.11.91.87:16001/api/x_snc_polls/vl/poll/{poll_id}/vote
Create new poll (POST)

Retrieve poll details (GET) T
Edit poll (PATCH) Prepare request

Vote in poll (POST)

A 4

Path parameters

Name Value

%k poll_id ddee64b9443a1200964fac543127a1ab

Query parameters

’ Add query parameter ‘

A sample request payload can be found at:
http://bit.ly/CC17 ScriptedRESTAPI Lab3 vote in poll sample request

NOTE: you will need to update the ‘poll_id’ to be that of a specific poll that exists in the Polls
application on your lab instance.

Request Body

Builder = Raw

{

"votes": [{
"question_id": "d5f383c4137612006ae13d62f244b056",
"vote": "Yellow"

)
¥

m [ServiceNow Script] [cURL] [Python] [Ruby] [JavaScript]

http://bit.ly/CC17_ScriptedRESTAPI_Lab3_vote_in_poll_sample_request

Click Send.
27. Verify response status code is 201 Created.

Response

Status code

Headers

Content-Encoding gzip

Content-Type application/json

Date Sun, 17 Apr 2016 17:27:27 GMT
Server ServiceNow

Transfer-Encoding chunked

X-Is-Logged-In true

Response Body

{
"message": "Voting successful"

}

Create tests in Postman

27. In Postman select the ‘CC17:Vote in poll’ request. This is a pre-built request that already
contains an appropriately formatted payload for calling the ‘Vote in poll’ resource.

28. Update the request replacing the {{instance_url}}, authorization credentials, and {{poll_id}}
with values appropriate for your lab instance. Use your admin credentials for this request.
Once you’ve updated those values save and then send the request.

29. As you saw when you tested with the REST API Explorer a successful response will include a
201 status code and an JSON payload informing you that voting was successful. Add tests in
Postman that verify that the following details in the response:

- Response status code is 201
- Response headers include Content-Type of application/json;charset=UTF-8
- Response body contains the text: “Voting successful”

30. You are on your own to create these tests in Postman. You can refer back to the tests you've
created in the previous steps for help.

31. Once you’ve added the tests save the request and send it. If you were successful you should
see all the tests passing.

(3) (6) Tests (3/3)
Status code is 201
Content-Type is application/json;charset=UTF-8

Response Body Contains "Voting successiu

Note: If you are really stuck here you can refer to the pre-built request in the Postman collection
named “CC17: Vote in poll w/ TEST” to see this request with tests fully specified.

Get Caught Up

If you were unable to successfully complete the lab this far, you can “fast forward” using the
following steps. Otherwise proceed to the next section Test with Postman.

32. Similar to creating the Lab3 starting branch, the completed lab can also be checked out from
a tag (Lab3-complete) in Source control.

33. In Studio, navigate to Source Control > Create Branch.

34. In the pop-up window, enter a branch name, then select Lab3-complete from the Create
from Tag menu, and click Create Branch.

Branch: my-Lab3-branch-complete
Create from Tag: Lab3-complete

35. When the switch is complete, click Close Dialog in the Create Branch pop-up.

36. Verify Studio is on branch my-Lab3-branch-complete.

Lab 3 is complete. You are now ready to begin lab 4.

Lab Goal

In Lab 4 you’ll continue building out the REST API for the Polls Lab 4
Enforcing

application adding resources to support retrieving the results of a
poll which includes details of individuals votes as well as the ability
to delete a poll. These operations expose functionality that should SECU rity
be restricted to users with an additional role so that we can limit
access to see how individual users voted as well as be able to delete
polls.

Scripted REST APIs allow you to specify ACLs that requestors must
have to be able to make a request both at the APl and Resource
level. These ACLs can then be associated users or groups via the standard access control
mechanism in ServiceNow.

Scripted REST APIs allow you to configure, at both the APl and Resource level, if a requestor
needs to authenticate (via Basic Auth or OAuth2.0) to ServiceNow to make requests. In
addition, you can configure if the requestor must be authorized, via specific ACLs, to make a
request to your API.

In building out these additional resources you will familiarize yourself with how you can use the
security features of Scripted REST APIs to secure your REST API.

Create Lab 4 starting branch
1. In Studio, navigate to Source Control > Create Branch.

2. Inthe pop-up window, enter a branch name, then select Lab4-start from the Create from
Tag menu, and click Create Branch.

Branch: my-Lab4-branch
Create from Tag: Lab4-start

3. When the switch is complete, click Close Dialog in the Create Branch pop-up.

4. Verify Studio is on branch my-Lab4-branch.

5. You are now ready to start Lab 4.

Create New Resource in Polls APl — Retrieve poll results

6. Open Polls APl from studio. Add a Resource to the API. Click New on the Resources related
list.

Give the resource a Name. Complete the script.

Name: Retrieve poll results

API Version: vl

HTTP method: GET

Relative path: /{poll_id}/results

Script: Copy script from http://bit.ly/CC17 ScriptedRESTAPI Lab4 retrieve poll results

NOTE: Notice that the script is using the GlideRecordSecure API.

= Scripted REST Resource

Request routing

The route configuration specifies the '"HTTP method' and 'Relative path". These fields determine how HTTP clients access this resource.

The relative path identifies the sub-path to this resource relative to the base API path. The relative URI can contain path parameters such as '/abc/{id}. The requesting client specifies the id value,
available to the script at runtime via the: Request API.

More info

HTTP method

Resource path

GET v

Japifx_snc_polls/v1/poll/{poll_id}/results

Relative path

/poll_id}/results

-—
== Retrieve poll results = ©o° | Update Delete
API definition Poll 0] Application Polls 0]
Name Retrieve poll results AP version vl Q, (0]
Active |+

Implement the resource
Access request details including URI path parameters, query parameters, headers, and the request body using the: Request API.

Configure the response including setting the HTTP status code, response body, and any response headers using the: Response API.

More info

Script E | 9e o8 v & | 7@ H % ?
(function process(/+RESTAPIRequestx/ request, /+RESTAPIResponsex/ response) {

var id = request.pathParams.poll_id;

var pollHelper = new x_snc_polls.PollData_Retriever();

var pollRecord = new GlideRecordSecure("x_snc_polls_poll");

pollRecord.get(id);

c

http://bit.ly/CC17_ScriptedRESTAPI_Lab4_retrieve_poll_results

7. Enable ACL authorization on the resource by setting an ACL. ACL settings are available under
Security tab

Requires ACL authorization: checked
ACLs: Click to unlock, and browse to select the Poll Manager ACL

Security ontent Negotiation = Decumentation

Resources can specify security settings that override the parent settings.

By default resources 'Require authentication’ but do not 'Require ACL authorization'. To make a resource public, meaning no authentication is required to access the resource, uncheck "Requires
authentication".

To require authorization, select the 'Requires ACL authorization® check box and select an ACL record(s). Leave the 'ACL field blank to enforce the 'Default ACLs' from the parent API. Access is granted
if at least one matching ACL record is found.

More info

Requires authentication |+ Requires ACL | v
authorization

ACLs | &4 Poll Manager

NOTE: Only ACLs of type REST Endpoint can be used.
Click Submit.

BEST PRACTICES
Do: Use the GlideRecordSecure API in your Scripted REST API Resource scripts to ensure that you
are enforcing existing access controls on the requesting user when interacting with ServiceNow

records.
Do: Test your access controls, both Authentication and Authorization, before making your API

available to consumers.

Test with REST API Explorer
8. Open ‘Retrieve poll results’ resource and Click Explore REST API in related actions.

9. Retrieve poll results resource is preselected in APl Explorer. Fill in sys_id of poll.

REST API Explorer

Namespace x_snc_polls & Poll
AP| Name Poll
Retrieve poll results
AP| Version vl
GET http://10.11.91.87:16801/api/x_snc_polls/vl/poll/{poll_id}/results
Create new poll (POST)
Retrieve poll details (GET
Delete poll (DELETE) Prepare request

Path parameters

Name Value

¥ poll_id ddee64b9443a1200964fac543127atab

Query parameters

Add query parameter

Click Send.

10. Verify response status code is 200-Ok.

Response

Status code

Headers
Cache-Control
Content-Encoding

Content-Type

no-cache,no-store,must-revalidate,max-age=-1
gzip

application/json;charset=UTF-8

Date Sun, 17 Apr 2016 17:51:53 GMT
Expires 0

Pragma no-store,no-cache

Server ServiceNow

Transfer-Encoding chunked

X-Is-Logged-In true

Response Body

{

"result": {
"name": "First Poll",
"questions": [
{
"question": "Favorite number",
“users": []
L
{
"question": "Favorite color",
"users": [
{
"user": "admin",
"answer": "Yellow"

}

1

Create tests in Postman

11. In Postman select the ‘CC17: Retrieve poll results’ request. This is a pre-built request that
will make a request to the ‘Retrieve poll results’ resource.

12. Update the request replacing the {{instance_url}}, authorization credentials, and {{poll_id}}
with values appropriate for your lab instance. Use your admin credentials for this request.
Once you’ve updated those values save and then send the request. If the request is
successful (200 OK) you will see a response similar to the one you saw when testing in the
REST API Explorer.

13. Now that you’ve made a successful request add tests to your Postman requests to validate
the request matches the expected results. Add tests that verify the following details in the
response:

- Response status code is 200
- Response headers include Content-Type of application/json;charset=UTF-8
- Response body contains the text: “name”

14. You are on your own to create these tests in Postman. You can refer back to the tests
you’ve created in the previous exercises for help.

15. Once you've added the tests save the request and send it. If you were successful you should
see all the tests passing.

(2) 9 Tests (3/3)
Status code is 200
Content-Type is applicationfison;charset=UTF-8

Response Body Contains name

Note: If you are really stuck here you can refer to the pre-built request in the Postman
collection named “CC17: Retrieve poll results w/ TEST” to see this request with tests fully
specified.

Create New Resource in Polls APl — Delete poll

16. Open Polls API from studio. Add a Resource to the API. Click New on the Resources related
list.

17. Give the resource a Name. Complete the script.
Name: Delete poll
API Version: vl
HTTP method: DELETE
Relative path: /{poll_id}
Script: Copy script from http://bit.ly/CC17 ScriptedRESTAPI Lab4 delete poll

=== Scripted REST Resource -—
= Delete poll f = 9o Update Delete
AP definition Poll @ Application Polls 0]
Name Delete poll AP version vl Q, 0]

Active +

Request routing
The route configuration specifies the 'HTTP method' and 'Relative path'. These fields determine how HTTP clients access this resource.

The relative path identifies the sub-path to this resource relative to the base API path. The relative URI can contain path parameters such as 'fabc/{id}'. The requesting client specifies the id value,
available to the script at runtime via the: Request API.

More info

HTTP method DELETE] Relative path /poll_id}

Resource path fapifx_snc_polls/vl/poll/{poll_id}

Implement the resource
Access request details including URI path parameters, query parameters, headers, and the request body using the: Request API.
Configure the response including setting the HTTP status code, response body, and any response headers using the: Response API.

More info

Script | & E S 30 Q v | a A @ B % N

(function process(/*RESTAPIRequest*/ request, /+RESTAPIResponsex/ response) {
var pollld = request.pathParams.poll_id;
var pollRecord = new GlideRecordSecure("x_snc_polls_poll");
pollRecord.get(pollId);
if (pollRecord, isValidRecord()) {
pollRecord.deleteRecord();
}

http://bit.ly/CC17_ScriptedRESTAPI_Lab4_delete_poll

18. Enable ACL authorization on the resource by setting an ACL. ACL settings available under
Security tab.

Requires ACL authorization: checked
ACLs: Click to unlock, and browse to select the Poll Manager ACL

Security ontent Negotiation = Documentation

Resources can specify security settings that override the parent settings.

By default resources 'Require authentication® but do not 'Require ACL authorization'. To make a resource public, meaning no authentication is required to access the resource, uncheck 'Requires
authentication’.

To require authorization, select the 'Requires ACL authorization' check box and select an ACL record(s). Leave the 'ACL' field blank to enforce the 'Default ACLs' from the parent API. Access is granted
if at least one matching ACL record is found.

More info

Requires authentication +* Requires ACL
authorization

ACLs & | Poll Manager

NOTE: Only ACLs of type REST Endpoint can be used
Click Submit.

== Access Control -—
= Poll Manager = e
Type REST_Endpoint Application Polls
Operation execute Active ‘/
Admin overrides v Advanced
| Name Poll Manager
Description
Definition v
Access Control Rules allow access to the specified resource if all three of these checks evaluate to true:
The user has one of the roles specified in the Role list, or the list is empty.
Conditions in the Condition field evaluate to true, or conditions are empty.
The script in the Script field (advanced) evaluates to true, or sets the variable "answer” to true, or is empty.
The three checks are evaluated independently in the order displayed above.
More Info
Requires role 44 4 1 tiofl B PP =
= Role
x_snc_polls.poll_manager
lig
Condition
(empty)
= Scripted REST Resources Goto | Name v It 44 « 1 tw2ofz B pp E
oll Manager
=MName & = HTTP method = Active = Relative path = Resource path = API definition = APl version
Delete pol| DELETE true Apoll_id} fapifx_snc_polls/v1/poll/{poll_id} Pol vl
Retrieve poll results GET true Aipoll_id}/results Japifx_snc_polls/v1/pollf{poll_id}/results Pall vi

NOTE: REST_Endpoint type ACLs (as shown above) are used to restrict access to Scripted
REST API Resources. The ‘Poll Manager’ ACL has been specified on the ‘Delete poll’ resource
and restricts access to this resource to users who have the role ‘x_snc_polls.poll_manager’.
Only users with this role can make requests to the ‘Delete poll’ resource.

Test with REST API Explorer

19. Open Delete poll resource and click Explore REST API in related actions.

20. Delete poll resource is preselected in API Explorer. Fill in request body in raw tab under
Request body section.

REST API Explorer

Namespace x_snc_polls $ Poll
APl Name Poll

Delete poll
API Varsion ul

DELETE http://10,11,91,67:16001/api/x_snc_polls/vl/poll/{poll_id}

Prepare request T

Path parameters

in poll POST Name Value

’, poll_id ddeefdba443a12009641ac543127alab

Query parameters

Add query parameter

Click Send.

21. Verify response status code is 204-No content.

Request

HTTP Method / URI DELETE

http://10.11.91.87:16001/api/x_snc_polis/v1/poll/ddee64b9443a1200964fac543127a1ab

Headers

Accept application/json

Content-Type application/json

X-UserToken dbe62d96b13212009642e4c16efadf4b7e65025ab30fb85257945e1d7e3f55983deb121
Response

Status code

Headers

Content-Encoding gzip

Date Sun, 17 Apr 2016 17:57:45 GMT

Server ServiceNow

X-Is-Logged-In true

Response Body

Create tests in Postman

22. In Postman select the ‘CC17:Delete poll’ request’. This is a pre-built request that will make a
request to the ‘Delete poll’ resource.

23. Update the request replacing the {{instance_url}}, authorization credentials, and {{poll_id}}
with values appropriate for your lab instance. Use your admin credentials for this request.
And make sure that the admin user has the ‘x_snc_polls.poll_manager’ role. Once you’'ve
updated those values save and then send the request. If the request is successful (204 No
Content) you will see a response similar to the one you saw when testing in the REST API
Explorer.

24. Add tests that verify the following details in the response:
- Response status code is 204
- Response body is empty

25. After adding these tests issue the request and verify that your tests are passing as shown
below.

2) (5) Tests (2/2)

Status code is 204

Response Body is empty

26. Create a new poll in your instance and then update this request in Postman to use the new
poll id and update the user credentials to use a user that does not have the
‘x_snc_polls.poll_manager’ role. Update the request in Postman and send the request.

27. NOTE: you have been deleting polls so you may need to go back and create some additional
poll records in your instance so that there are polls that you can delete (hint use insert and
stay to quickly create new polls for testing).

28. Send your updated request now and verify that for a user that when making a request with
a user that does not have the ‘x_snc_polls.poll_manager’ role you receive a status code of
403 Forbidden and that your test fail case ‘Status code is 204’ fails as shown below.

(2) (10) Tests (1/2)

m Status code is 204

Response Body is empty

29. NOTE: If you are really stuck here you can refer to the pre-built request in the Postman
collection named “CC17: Delete a poll w/ TEST” to see this request with tests fully specified.

Get Caught Up

If you were unable to successfully complete the lab this far, you can “fast forward” using the
following steps. Otherwise proceed to the next section Test with Postman.

30. Similar to creating the Lab4 starting branch, the completed lab can also be checked out
from a tag (Lab4-complete) in Source control.

31. In Studio, navigate to Source Control > Create Branch.

32. In the pop-up window, enter a branch name, then select Lab4-complete from the Create
from Tag menu, and click Create Branch.

Branch: my-Lab4-branch-complete
Create from Tag: Lab4-complete

33. When the switch is complete, click Close Dialog in the Create Branch pop-up.
34. Verify Studio is on branch my-Lab4-branch-complete.
35. Close the REST API Explorer and APl Analytics dashboard windows.

Lab 4 is complete. You are now ready to begin lab 5.

Lab Goal

Versioning a REST API is a common task when you want to introduce Lab 5
Versioning

new functionality or behaviors to your REST API but don’t want to
break existing clients. Scripted REST APIs support easily versioning your
resources. With versioning support you can quickly create new versions
of existing resources to introduce new functionality. You have the
ability to specify what version of a resource is the default and to which
requests will be routed if the client does not specify a version in the
URL or to force the clients of your REST API to include a version in the
URL they make requests to.

In this lab you will add a new version to the Polls REST APl you have been creating to familiarize
yourself with the versioning functionality in Scripted REST APls.

BEST PRACTICES

Do: Version your REST API. By default, you do not need to create a version when creating a
Scripted REST APl in ServiceNow. Best practice is to version your REST APl and disable the
default route so that consumers must explicitly include the version number in their request URL.
In this way you allow clients to decide if and when they want to use a later version of your REST
API. If you need to force them to move to a new version at a later point in time you have the
ability to disable versions.

Create Lab 5 starting branch
1. In Studio, navigate to Source Control > Create Branch.

2. Inthe pop-up window, enter a branch name, then select Lab5-start from the Create from
Tag menu, and click Create Branch.

Branch: my-Lab5-branch
Create from Tag: Lab5-start

3. When the switch is complete, click Close Dialog in the Create Branch pop-up.

4. Verify Studio is on branch my-Lab5-branch.

5. You are now ready to start Lab 5.

Add Version to Poll REST API
6. Open Poll APl and click Add New version.

= g(c’ﬂpted REST Service ‘& -:__—. ool Update ol
Name 4 Poll . Application Polls @
API ID poll APl namespace x_snc_polls
Active Base API path Japifx_snc_polls/pall
Protection policy --None -- 4

Security =~ Versioning Content Negotiation = Documentation

Default ACLs may be selected to apply to all resources, but individual resources can override this setting.
The Default ACLs are enforced for a resource when:

» The resource 'Requires authentication' and 'Requires ACL authorization' fields are selected, and
= The resource itself does not reference any ACL records

Access is granted if at least one matching ACL record is found.

More info

Default ACLs

Update Delete

Related Links
Add new version
Explore REST API

API analytics

7. Select version 1 to copy resources. Click Ok.

Add new version

Make this version the default

Copy existing resources from version:

Cancel

Sgcurity| Versioning | Conbent Negotiation | Documentation

Versions may also be inactivated or deprecated

& FESOUrTES h'.'":-'l_r‘_"'l D INaCIWE WErSIOns Cannol S8rve requests

N active delauly wrsion

Servion Verslons

= viprsion ID = ks default
X vi false
b4 ¥l false

dnserfa i

* Resources belonging to deprecated versions can serve requests, but are identified as 'Deprecated” in documentation

= Active

true

44 4

false

false

to2of 2

= Deprecated

To sdd & few version, use the Add new vericon' Bak below, You can select one veriicn a4 the default. Clients can sccess the default version using either the versionsd o non-versicned UR path

L

NOTE: Both versions of the API have default set to false. This means that clients consuming this
APl must include the resource version in the URL.

Resources (12) | Request Headers Query Parameters
= Resources m Goto Name v 44 1 tol2ofl2
? API definition = Pol
G\ = Name a = HTTP method = Relative path = Resource path = API version
I Create new poll POST / Japi/x_snc_polls/v1/poll vl
Create new poll (v2 POST / Japifx_snc_polls/v2/poll v2
Delete poll DELETE /poll_id} fapi/x_snc_polls/v1/poll/{poll_id} vl
Delete poll (v2] DELETE /{poll_id} Japifx_snc_polls/v2/poll/{poll_id} v2
"_i) Edit poll PATCH Hpoll_id} Japi/x_snc_polls/vl/poll/{poll_id} vl
O] Edit poll (v2 PATCH Mpoll_id} Japi/x_snc_polls/v2/poll/{poll_id} v2
(,7:: Retrieve poll details GET Hpoll_id} Japi/x_snc_polls/vl/poll/{poll_id} vl

Ll 4 S|

= Active

true

true

true

true

true

true

true

NOTE: Observe every resource in v1 is copied and added to v2

Test with Postman

8. In Postman, review the requests named ‘CC17: Create new poll v1’ and ‘Create new poll v2’
noting the version number is explicitly specified in the URL for these two requests.

9. Add the tests that you added to the ‘CC17: Create new poll’ request to this the V1 and V2
requests. The behavior between the V1 and V2 resources has not been updated so you can
copy and paste your test cases from the ‘CC17: Create new poll’ request and the tests
should pass.

10. Verify that your test cases pass successfully.

Get Caught Up

If you were unable to successfully complete the lab this far, you can “fast forward” using the
following steps. Otherwise proceed to the next section Test with Postman.

11. Similar to creating the Lab2 starting branch, the completed lab can also be checked out
from a tag (Lab5-complete) in Source control.

12. In Studio, navigate to Source Control > Create Branch.

13. In the pop-up window, enter a branch name, then select Lab5-complete from the Create
from Tag menu, and click Create Branch.

Branch: my-Lab5-branch-complete
Create from Tag: Lab5-complete

14. When the switch is complete, click Close Dialog in the Create Branch pop-up.
15. Verify Studio is on branch my-Lab5-branch-complete.
16. Close the REST APl Explorer and API Analytics dashboard windows.

Lab 5 is complete. You are now ready to begin lab 6.

Lab Goal

Errors... they happen to the best of us. Whether you are making Lab 6
Error

requests to a 3" party REST API or your own REST API there are
times when you receive errors. Ideally the error message provides

you (the client) with enough information to realize what went ha nd"ng

wrong, if it was your fault (client) or their fault (REST API) and how
you can proceed.

Scripted REST APIs provide a helper APl (sn_ws_err) to make it easier
for you as the REST API designer to easily to return consistent and
informative error messages from your REST API.

Create Lab 6 starting branch

1.
2.

In Studio, navigate to Source Control > Create Branch.

In the pop-up window, enter a branch name, then select Lab6-start from the Create from
Tag menu, and click Create Branch.

Branch: my-Lab6-branch
Create from Tag: Lab6-start

When the switch is complete, click Close Dialog in the Create Branch pop-up.

Verify Studio is on branch my-Lab6-branch.

You are now ready to start Lab 6.

Add Error handling to API — Retrieve poll detail
6. Open Retrieve poll detail (v2).
7. Modify script to check if poll record exists and send a 404 error response.

Script: Copy script from http://bit.ly/CC17 ScriptedRESTAPI Lab6 retrieve poll detail v2

ene Polls | Lab

10.11.91.87:16001/8studio.do?sysparm_transaction_scope=80b89cd944b61200964fa

43127a129&sysparm_nostack=true

STUDIO File Source Control Search
<+ Create New Application File O, Goto Code Search
el Retrieve poll results Delete poll Poll Retrieve poll details ...
¥ Navigation Scripted REST Resource Scripted REST Resource Scripted REST API Scripted REST Resource
v lication Menus A
g = Scripted REST Resource # = oo Update Delete
Poll = Retrieve poll details (v2) -— P
¥ Modules
e The relative path identifies the sub-path to this resource relative to the base API path. The relative URI can contain path parameters such as ‘/abc/{id}. The requesting client specifies the id value,
available to the script at runtime via the: Request API.
Poll Responses
Polls More info
Questions
v lication Menus (Mobile)
o (Moblie) HTTPmethod | GET N Relative path | /{poll_id}
Poll
¥ Modules (Mobile) Resource path | /api/x_snc_polls/v2/poll/(poll_id}
Choices
Poll Responses Implement the resource
Polls
Access request details including URI path parameters, query parameters, headers, and the request body using the: Request API.
Questions
i h : Response APL.
v b5 RE Configure the response including setting the HTTP status code, response body, and any response headers using the: Response AP|
v Scripted REST APIs Moreinfo
Hello, world!
Poll 2 " » » - 5 = 2
Script | E | 3 | 35 Alv|a @ o >
v Scripted REST Resources
. (function process(/+RESTAPIRequest#/ request, /+RESTAPIResponsex/ response) {
Hello, world!/Hello resource [GET] var id = request.pathParams.poll_id;
Poll/Create new poll [POST] var pollHelper = new x_snc_polls.PollData_Retriever();
var pollRecord = new GlideRecordSecure("x_snc_polls_poll");
Poll/Delete poll [DELETE] pott getidhs
if (!pollRecord.isValidRecord()) {
/!
Poll/Edit ot [PATCH) throw new sn_ws_err.NotFoundError("Poll not found");
Poll/Retrieve poll details [GET] }
Poll/Retrieve poll results [GET] var pollResponse = {
Poll/Vote in poll {POST] name: pollRecord.getValue(“name"),
questions: pollHelper.getQuestions(id).as_list,
Poll/Create new poll (v2) [POST] Y
Poll/Delete poll (v2) [DELETE] return pollResponse;
Poll/Edit poll (v2) [PATCH] }) (request, response);
PollRetrevepoll detals (v (GeT]
Poll/Retrieve poll results (v2) [GET] Protection policy | —None— ;
PollVote in poll (v2) [POST]

Test with REST API Explorer

8. Open ‘Retrieve poll detail (v2)’ resource and Click Explore REST API in related actions.

9. Version v2 of Retrieve poll results resource is preselected in APl Explorer.

Namespace x_snc_polls : Poll
AP| Name Pall 3

Retrieve poll details (v2) - Retrieve poll, questions, choices and votes polled by sysid
API Versi*sn v2 B |

GET http://10.11.91.87:16001/api/x_snc_polls/v2/poll/{poll_id}
Create new poll (v2) (POST)

P | Retrieve poll details (v2) (GET) |
Delete poll (v2) (DELETE) Prepare request

Edit poll (v2) (PATCH)

Path parameters
Retrieve poll results (v2) (GET)
Vote in poll (v2) (POST) Name Value
% poll_id

Query parameters

http://bit.ly/CC17_ScriptedRESTAPI_Lab6_retrieve_poll_detail_v2

10. Fill in invalid sys_id of poll and click Send.
11. Verify response status code is 404-Not Found.

Response
Status code 404 Not Found
Headers
Cache-Control no-cache,no-store,must-revalidate,max-age=-1
Content-Encoding gzip
Content-Type application/json;charset=UTF-8
Date Sun, 17 Apr 2016 18:35:47 GMT
Expires 0
Pragma no-store,no-cache
Server ServiceNow
Transfer-Encoding chunked
X-Is-Logged-In true
Response Body
{
"error': {
"detail: "™,
"message”: "Poll not found"
h
"status": "failure"
}

Create tests in Postman

12. In Postman select the ‘CC17: Retrieve poll detail V2’ request’. This is a pre-built request that
will make a request to the ‘Retrieve poll detail V2’ resource.

13. Update the request replacing the {{instance_url}}, authorization credentials, and {{poll_id}}
with values appropriate for your lab instance. Be sure to specify an invalid poll_id. Send a
request and verify that you receive a 404 Not Found status code and that the response
body contains the same error message you received in REST APl Explorer.

14. Add tests that verify the following details in the response:

- Response status code is 404

- Response body contains “error”

- Response headers include Content-Type of application/json;charset=UTF-8

- Response body is JSON and contains a status property with a value of ‘failure’.

NOTE: Postman has a test feature that allows you to parse a JSON response and verify it
contains a specific property and value. See if you can figure out how to use it. More info can
be found at https://www.getpostman.com/docs/testing _examples.

If you are stuck here you can refer to the pre-built request in the Postman collection named
“CC17: Retrieve poll detail V2 w/ TEST” to see this request with tests fully specified.

https://www.getpostman.com/docs/testing_examples

Add Error handling to APl — Vote in poll
15. Open Vote in poll(v2).

16. Modify script to check whether poll record exists as well as to see user already voted for the
poll.

Script: Copy script from http://bit.ly/CC17 ScriptedRESTAPI Lab6 vote in poll v2

Retrieve poll results ... Vote in poll (v2) Poll Response
Data Model Scripted REST Resource Scripted REST Resource Table
oo = ag?epit:dg‘f‘(SJz?ewurce & = oo Update Delete
Server Development P
Access Control - -
Access request details including URI path parameters, query parameters, headers, and the request body using the: Request AP,
Navigation
[v— Configure the response including setting the HTTP status code, response body, and any response headers using the: Response API.
» Scripted REST APls More info
¥ Scripted REST Resources
Hello, world!/Hello resource [GET) scrpt | @ gt alv~@ e a8le R

reate new poll [POST]

(function process(/+RESTAPIRequest+/ request, /+RESTAPIResponsex/ response) {
ete poll [DELETE]
R var pollld = reguest.pathParams.poll_id;
dit poll [PATCH] var pollHelper = new x_snc_polls.PollData_Creator();
oll details [GET]
_ // Validate if poll record exists
oll results [GET] var pollRecord = new GlideRecordSecure("x_snc_polls_poll”};
11B,

if(!pollRecord. isValidRecord()){
throw new sn_ws_err.NotFoundError("Poll Not found");
}

var voteData = request.body.data.votes;

77 VerITy 17 already voted

var pollResponseRecord = new GlideRecordSecure("x_snc_polls_poll_response");
pollResponseRecord. addQuery("poll”, pollld);

. pollResponseRecord. addQuery ("sys_created_by", gs.getUserName()};
pollResponseRecord.query();

if(pollResponseRecord.next(}){

throw new sn_ws_err.ConflictError("Already voted");
}

/7 Record votes
pollHelper.voteInPoll(voteData, pollld);

/f Set response details
response,setStatus(201);

H (request, response);

Test with REST API Explorer
Open ‘Vote in poll (v2)’ resource and Click Explore REST API in related actions.
17. Version v2 of Vote in poll resource is preselected in APl Explorer.

18. Fill in an invalid sys_id of poll and click Send

http://bit.ly/CC17_ScriptedRESTAPI_Lab6_vote_in_poll_v2

19. Verify response status code is 404-Not Found

Response
Status code 404 Not Found
Headers
Cache-Control no-cache,no-store,must-revalidate,max-age=-1
Content-Encoding gzip
Content-Type application/json;charset=UTF-8
Date Sun, 17 Apr 2016 18:35:47 GMT
Expires 0
Pragma no-store,no-cache
Server ServiceNow
Transfer-Encoding chunked
X-Is-Logged-In true
Response Body
{
"error': {
"detail: "™,
"message": "Poll not found"
h
"status": "failure"
}

20. Now fill in a valid sys_id and request body and click Send to vote.

Specify the request body as shown below. Sample script available for you to copy at:
http://bit.ly/CC17 ScriptedRESTAPI Lab6 vote in poll v2 sample request

Request Body

Builder = Raw

{

"votes": [{

"question_id": "ab4fe4h9443a1200964fac543127aleb",
"vote": "Yellow"

1
}

http://bit.ly/CC17_ScriptedRESTAPI_Lab6_vote_in_poll_v2_sample_request

21. Verify response status code is 409-Conflict.

NOTE: Depending on state of instance, you might need to fire the request twice. The first
request is a valid vote while the second request results in a conflict response.

Response
Status code 409 Conflict
Headers
Cache-Control no-cache,no-store,must-revalidate,max-age=-1
Content-Encoding gzip
Content-Type application/json;charset=UTF-8
Date Sun, 17 Apr 2016 19:12:31 GMT
Expires 0
Pragma no-store,no-cache
Server ServiceNow
Transfer-Encoding chunked
X-Is-Logged-In true

Response Body

{
"error": {
"detail™: ""
"message": "Already voted"
}
"status": "failure"

}

Create tests in Postman

22. In Postman select the ‘CC17: Vote in poll V2’ request’. This is a pre-built request that will
make a request to the ‘Vote in poll V2’ resource.

23. Update the request replacing the {{instance_url}}, authorization credentials, {{poll_id}}, and
body of the request with vote details (question_id and vote value) appropriate for your lab
instance.

NOTE: Depending on the state of instance, you might need to fire the request twice. The
first request is a valid vote while the second request results in a conflict response. This is
because you have added a constraint that users can only vote for a question once.

24. Add tests that verify the following details in the response:
- Response status code is 409 Conflict
- Response body contains ‘error’
- Response headers include Content-Type of ‘application/json;charset=UTF-8’
- Response body is JSON and contains an error property with message property with a value
of ‘Already voted'.

25. In Postman create a copy of this request by clicking on the “..." icon to the right of the
request name in the left-hand list of requests as shown below and then clicking ‘Duplicate’.
This will create a copy of your request that you will update to verify the error message that
is returned when you attempt to vote on the same question twice.

CC17: Create new [I} OpeninNewTab

-4 Rena
CC17: Create new Al Rename

&

CC17: Retrieve poll # Edit

CC17: Retrieve po ID Duplicate *—

CC17:Voteinpolly W Delete

CC17: Vote in poll V2

26. Update this new request adding tests that verify the following details in the response:
- Response status code is 409
- Response body contains “error”
- Response headers include Content-Type of application/json;charset=UTF-8
- Response body is JSON and contains a status property with a value of ‘failure’.

27. Issue the request and verify that all of your tests have completed successfully.

Add Error handling to API — Retrieve poll results
28. Open Retrieve poll results (v2).
29. Modify script to check if poll exists and send customized error response.

Script: Copy script: http://bit.ly/CC17 ScriptedRESTAPI Lab6 retrieve poll results v2

Seiptod REST Rosouera atla

. Scripted RESTAP1s
W Scripted REST Resaurees

aquest, /+AESTAPIREspOnses/ response) {

ESTAPIREQUEST#/ e
atnParans.poll_id;

e ¥_SC_poL1S. Pollbata_Retriever();
ew GLideRecordSecure(x_snc_polls pol1");

po

if (TpolThecord, isvalidRecord (1] {
War err = new sn_ws_err.Serviceerroril;

er|

e

rd.getvalue (" nane") ,
Helper, getResultsByUser]10)

_ raturn poliResponse;
Virequest, response);

Test with REST API Explorer

30. Open ‘Retrieve poll results (v2)’ resource and Click Explore REST API in related actions.

31. Version v2 of Retrieve poll results resource is preselected in APl Explorer.

REST API Explorer

Namespace %_sne_polls s Poll

APl Name Pall

poll results (v2)
AP Version v2

GET http://10.11.91.87:16001/api/x_snc_polls/v2/poll/{poll_id}/results

Create new poll (x

Retrieve poll deta
Delete poll (v2) (DELETE) Prepare request
Edit nall (42} (PATCH)

Path parameters
P | Retrieve poll results (v2) (GE

VO ROV TPOSTT Name Value

¥ poll_id invalid

32. Fill in invalid sys_id of poll and click Send.

http://bit.ly/CC17_ScriptedRESTAPI_Lab6_retrieve_poll_results_v2

33. Verify response status code is 404-Not Found with custom Error message.

Response
Status code 404 Not Found
Headers
Cache-Control no-cache,no-store, must-revalidate,max-age=-1
Content-Encoding gzip
Content-Type application/json;charset=UTF-8
Date Sun, 17 Apr 2016 19:35:33 GMT
Expires 0
Pragma no-store,no-cache
Server ServiceNow
Transfer-Encoding chunked
X-Is-Logged-In true

Response Body

{
"error": {
"detail™: "Valid sysId of record is required to retrieve results. To get valid sysId, use api/now/table/x_snc_polls_poll endpoint to ge
"message': "Cant find poll with id:invalid"
.
"status": "failure"
}

Create tests in Postman

34. Now that you have experience using Postman to build requests and create tests you are on
your own for this last Postman test.

35. Create a new Postman request, either brand new or by duplicating an existing request, that
makes a request to the Retrieve poll results V2 resource with an invalid poll id.

36. Add tests to this request verifying the following:
- Response status code is 404
- Response body contains “error”
- Response headers include Content-Type of ‘application/json;charset=UTF-8’
- Response body is JSON and contains an error property with with a message child property
that has a value of ‘Can’t find poll with id:invalid’.

37. Issue request and verify that all tests pass successfully.

Get Caught Up

If you were unable to successfully complete the lab this far, you can “fast forward” using the
following steps. Otherwise proceed to the next section Test with Postman.

38. Similar to creating the Lab6 starting branch, the completed lab can also be checked out
from a tag (Lab6-complete) in Source control.

39. In Studio, navigate to Source Control > Create Branch.

40. In the pop-up window, enter a branch name, then select Lab6-complete from the Create
from Tag menu, and click Create Branch.

Branch: my-Lab6-branch-complete
Create from Tag: Lab6-complete

41. When the switch is complete, click Close Dialog in the Create Branch pop-up.
42. Verify Studio is on branch my-Lab6-branch-complete.
43. Close the REST API Explorer and API Analytics dashboard windows.

Lab 6 is complete. You are now ready to begin lab 7.

Lab Goal

Congratulations you’ve made it to the challenge lab. If you’ve made Lab 7

Challenge

it this far you have either whizzed right through labs 1-6 and are a
Scripted REST API and Postman expert or you’re working on this
challenge lab after the CreatorCon Workshop. La b

Throughout this workshop you have built a Scripted REST API for the
Polls application and created requests with tests in the Postman
collection that allow you to quickly issues requests to your REST API
that also have test cases that verify the REST APl is returning valid
responses and behaving as intended.

Creating tests that validate your REST APIs behavior is a BEST PRACTICE that allows you to
easily verify your REST APl is behaving as intended and quickly identify any breaking changes in
your REST API in the future as you make changes to add functionality or patch bugs.

Postman makes it easy to run these tests manually but Nobody enjoys running tests manually
all the time. Wouldn’t it be nice if you could automate these tests? | certainly think so. Let’s
take this one step further and see if you can get these tests to run from the command line.
Postman provides a tool called Newman that allows you to run the tests in your existing
Postman collection from the command line and see the results either at the command line or
write them to a file. For this challenge lab your task is to install Newman and run your Postman
collection from the command line. Check out the links below to download and install Newman
and get more information on how to run a collection from the command line.

If you can get Newman running from the command line you are only a few steps away (bash,
cron, PowerShell script) from automating your REST API test cases with Postman and Newman.
This is outside the scope of this lab but you can imagine how you could integrate this with a
continuous integration testing tool to have these tests run on a regular basis or as part of a
build process.

Newman: http://blog.getpostman.com/2014/05/12/meet-newman-a-command-line-
companion-for-postman/

Running collections from the command line:
https://www.getpostman.com/docs/newman_intro

Integrating automated API tests with Jenkins:
https://www.getpostman.com/docs/integrating with jenkins

http://blog.getpostman.com/2014/05/12/meet-newman-a-command-line-companion-for-postman/
http://blog.getpostman.com/2014/05/12/meet-newman-a-command-line-companion-for-postman/
https://www.getpostman.com/docs/newman_intro
https://www.getpostman.com/docs/integrating_with_jenkins

	Prerequisites
	Fork the Lab GitHub Repository
	Import the Polls Application from Source Control
	Get ready for Lab 1 – Create a new branch from Lab1-start tag in Studio
	Create Lab 1 starting branch
	Create the Hello World Scripted REST API
	Test with REST API Explorer
	Get Caught Up
	Test with Postman
	View API Analytics for Hello World
	Create Lab 2 starting branch
	Create the Polls Scripted REST API
	Test with REST API Explorer
	Get Caught Up
	Test with Postman
	Create the Lab 3 starting branch
	Create New Resource in Polls API - Create a poll
	Test with REST API Explorer
	Create tests in Postman
	Create New Resource in Polls API – Edit poll
	Test with REST API Explorer
	Create tests in Postman
	Create New Resource in Polls API – Vote in poll
	Test with REST API Explorer
	Create tests in Postman
	Get Caught Up
	Create Lab 4 starting branch
	Create New Resource in Polls API – Retrieve poll results
	Test with REST API Explorer
	Create tests in Postman
	Create New Resource in Polls API – Delete poll
	Test with REST API Explorer
	Create tests in Postman
	Get Caught Up
	Create Lab 5 starting branch
	Add Version to Poll REST API
	Test with Postman
	Get Caught Up
	Create Lab 6 starting branch
	Add Error handling to API – Retrieve poll detail
	Test with REST API Explorer
	Create tests in Postman
	Add Error handling to API – Vote in poll
	Test with REST API Explorer
	Create tests in Postman
	Add Error handling to API – Retrieve poll results
	Test with REST API Explorer
	Create tests in Postman
	Get Caught Up

